博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Generalization and Zeros
阅读量:6585 次
发布时间:2019-06-24

本文共 768 字,大约阅读时间需要 2 分钟。

Two question

Overfitting

From Unigram, Bigram, Trigram, Quadrigram, the prediction of Quadrigram is better than Trigram, than Bigram, than Unigram.

But N-grams only work well for word prediction if the test corpus looks like the training corpus. In real life, this doesn't happen, so we should train robust models that do a better job of generalizing.

Zeros

Firstly, if there is V words and we use Bigram, it will generalizate V^2, there are a lot of probality is zero. What's the worse, the Quadrigrams will generalizate more zero.

Secondly, things that never occurred in the training set, but do occur in the test data, and we can never compute perplexity. This is a big problem we need to solve.

转载于:https://www.cnblogs.com/chuanlong/archive/2013/04/25/3042508.html

你可能感兴趣的文章
PHP中如何对二维数组按某个键值进行排序
查看>>
SharePoint 2013 EventHanlder工具
查看>>
jQuery和javascript的区别
查看>>
doctest --- 一个改善python代码质量的工具
查看>>
hdu1290
查看>>
hdu2141Can you find it?
查看>>
值类型和引用类型 (转)
查看>>
Axure RP 8 下载 激活可以使用的授权码、用户名、秘钥等
查看>>
20155303 2016-2017-2 《Java程序设计》第四周学习总结
查看>>
c语言基础课第三次作业
查看>>
MogileFS系统简单配置实例
查看>>
【转】[C# 基础知识系列]专题九 :深入理解泛型可变性
查看>>
AS3.0 学习笔记002
查看>>
map, hash_map, multimap的使用及区别
查看>>
NLog配置文件根节点
查看>>
Java中的SPI Service Provider Interface 介绍及示例
查看>>
nginx 不记录指定类型日志
查看>>
为某个老狗提供表白基址
查看>>
csa Round #66 (Div. 2 only)
查看>>
虚拟机全屏问题
查看>>